3.200 \(\int \frac{x}{(a+b x)^4} \, dx\)

Optimal. Leaf size=30 \[ \frac{a}{3 b^2 (a+b x)^3}-\frac{1}{2 b^2 (a+b x)^2} \]

[Out]

a/(3*b^2*(a + b*x)^3) - 1/(2*b^2*(a + b*x)^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0128605, antiderivative size = 30, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 9, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {43} \[ \frac{a}{3 b^2 (a+b x)^3}-\frac{1}{2 b^2 (a+b x)^2} \]

Antiderivative was successfully verified.

[In]

Int[x/(a + b*x)^4,x]

[Out]

a/(3*b^2*(a + b*x)^3) - 1/(2*b^2*(a + b*x)^2)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{x}{(a+b x)^4} \, dx &=\int \left (-\frac{a}{b (a+b x)^4}+\frac{1}{b (a+b x)^3}\right ) \, dx\\ &=\frac{a}{3 b^2 (a+b x)^3}-\frac{1}{2 b^2 (a+b x)^2}\\ \end{align*}

Mathematica [A]  time = 0.0065877, size = 20, normalized size = 0.67 \[ -\frac{a+3 b x}{6 b^2 (a+b x)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(a + b*x)^4,x]

[Out]

-(a + 3*b*x)/(6*b^2*(a + b*x)^3)

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 27, normalized size = 0.9 \begin{align*}{\frac{a}{3\,{b}^{2} \left ( bx+a \right ) ^{3}}}-{\frac{1}{2\,{b}^{2} \left ( bx+a \right ) ^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x+a)^4,x)

[Out]

1/3*a/b^2/(b*x+a)^3-1/2/b^2/(b*x+a)^2

________________________________________________________________________________________

Maxima [A]  time = 1.03351, size = 58, normalized size = 1.93 \begin{align*} -\frac{3 \, b x + a}{6 \,{\left (b^{5} x^{3} + 3 \, a b^{4} x^{2} + 3 \, a^{2} b^{3} x + a^{3} b^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x+a)^4,x, algorithm="maxima")

[Out]

-1/6*(3*b*x + a)/(b^5*x^3 + 3*a*b^4*x^2 + 3*a^2*b^3*x + a^3*b^2)

________________________________________________________________________________________

Fricas [A]  time = 1.51679, size = 89, normalized size = 2.97 \begin{align*} -\frac{3 \, b x + a}{6 \,{\left (b^{5} x^{3} + 3 \, a b^{4} x^{2} + 3 \, a^{2} b^{3} x + a^{3} b^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x+a)^4,x, algorithm="fricas")

[Out]

-1/6*(3*b*x + a)/(b^5*x^3 + 3*a*b^4*x^2 + 3*a^2*b^3*x + a^3*b^2)

________________________________________________________________________________________

Sympy [A]  time = 0.539855, size = 44, normalized size = 1.47 \begin{align*} - \frac{a + 3 b x}{6 a^{3} b^{2} + 18 a^{2} b^{3} x + 18 a b^{4} x^{2} + 6 b^{5} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x+a)**4,x)

[Out]

-(a + 3*b*x)/(6*a**3*b**2 + 18*a**2*b**3*x + 18*a*b**4*x**2 + 6*b**5*x**3)

________________________________________________________________________________________

Giac [A]  time = 1.20428, size = 24, normalized size = 0.8 \begin{align*} -\frac{3 \, b x + a}{6 \,{\left (b x + a\right )}^{3} b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x+a)^4,x, algorithm="giac")

[Out]

-1/6*(3*b*x + a)/((b*x + a)^3*b^2)